GEOMETRY AND MESOMORPHIC PROPERTIES OF NEW SCHIFF BASES CONTAINING THIAZOLE RING

M. M. Murza, Z. Kh. Kuvatov, and M. G. Safarov

New liquid-crystalline azomethines -2-(4-alkoxybenzylideneamino)-4-(3-nitrophenylamino)thiazoles - displaying nematic mesomorphism at 42-137°C have been synthesized. The structure of these compounds was studied by the MNDO LCAO MO method. A correlation was found between the geometric parameters and liquid crystal properties.

The rapid development of liquid crystal research is related to the unique optical properties of these substances, which have led to their wide application in the data processing industry [1]. The orienting properties of liquid crystals are used in nuclear magnetic and electron paramagnetic resonance spectroscopy, in the orientation of pleochroic dye molecules, and the preparation of ferromagnetic suspensions in liquid crystals. Furthermore, the unique properties of these substances are used for the orientation and structure formation of polymers [2, 3].

In this work, we synthesized 2-(4-alkoxybenzylideneamino)-4-(3-nitrophenylamino)thiazoles.

I a R = CH₃; b R = C₂H₅; c R = C₃H₇; d R = C₄H₉; e R = C₅H₁₁; f R = C₆H₁₃; g R = C₇H₁₅; h R = C₈H₁₇; i R = C₉H₁₉; j R = C₁₀H₂₁

Products Ia-j were obtained by the chloroacetylation of starting *m*-nitroaniline in diethyl ether. The resultant N-chloroacetyl-*m*-nitroaniline (II) was treated with thiourea in absolute ethanol. The condensation of the obtained N-(2-amino-4-thiazolyl)-3-nitroaniline (III) with *p*-alkoxybenzaldehydes in dry tetrahydrofuran in the presence of catalytic amounts of piperidine gave products Ia-j.

The composition and structure of all obtained products were confirmed by elemental analysis data (see Table 1) and PMR spectroscopy. The PMR spectra of Schiff bases Ia-j were similar; in them signals at 0.5-0.9 (t, CH₃), 1.2-1.9 (m, CH₂), 3.5-4.2 (d, CH₂O), 4.3-4.5 (s, NH), 6.5-8.4 (m, C₆H₄), 7.2-7.3 (s, H_{thiazole}), and 9.8-9.9 ppm (s, N=CH) were present.

Compounds Ia-j display nematic mesomorphism in different temperature ranges (42-137°C). Table 1 shows that the clarification temperature (T_{N-l}) undergoes discontinuous change with the increase of length of the aliphatic chain in the benzylidene component while propyloxy (Ic) and hexyloxy (If) derivatives have a broad meso phase temperature range relative to the other derivatives.

Bashkir State University, 450074 Ufa, Russia; e-mail: kuvatovzk@ic.bashedu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1242-1248, September, 1999. Original article submitted May 20, 1999.

0009-3122/99/3509-1097\$22.00©1999 K luwerAcademic/Plenum Publishers

Com-	Empirical	-	Found, % alculated, ?		_T _{C-N} *, ⁰C	Т _{N-I} , °С	Yield, %
pound	Tormula	С	Н	N			
la	$C_{17}H_{14}N_4O_3S$	<u>57.56</u> 57.62	<u>3.82</u> 3.98	<u>15.64</u> 15.81	120	137	53
lb	$C_{18}H_{16}N_4O_3S$	<u>58.50</u> 58.68	<u>4.28</u> 4.38	<u>15.02</u> 15.21	50	119	71
Ic	$C_{19}H_{18}N_4O_3S$	<u>59.52</u> 59.67	<u>4.56</u> 4.74	<u>14.48</u> 14.65	42	118	75
Id	$C_{20}H_{20}N_4O_3S$	<u>60.42</u> 60.79	<u>5.18</u> 5.08	$\frac{14.02}{14.13}$	86	116	72
Ie	C ₂₁ H ₂₂ N ₄ O ₃ S	<u>61.20</u> 61.44	$\frac{4.98}{5.40}$	$\frac{13.48}{13.65}$	55	127	63
If	C ₂₂ H ₂₄ N ₄ O ₃ S	<u>62.06</u> 62.24	<u>5.58</u> 5.70	$\frac{13.02}{13.20}$	47	123	68
lg	$C_{23}H_{26}N_4O_3S$	<u>62.82</u> 62.99	<u>5.74</u> 5.98	$\frac{12.56}{12.78}$	59	110	62
Ĭh	C ₂₄ H ₂₈ N ₄ O ₃ S	<u>63.52</u> 63.69	$\frac{6.08}{6.24}$	$\frac{12.14}{12.38}$	84	122	73
li	C25H30N4O3S	<u>64.12</u> 64.35	<u>6.36</u> 6.48	$\frac{11.86}{12.01}$	56	119	69
lj	$C_{26}H_{32}N_4O_3S$	<u>64.84</u> 64.97	<u>6.54</u> 6.71	<u>11.48</u> 11.66	90	129	65
111	C ₉ H ₈ N ₄ O ₂ S	<u>45.64</u> 45.76	$\frac{3.28}{3.41}$	$\frac{23.48}{23.71}$	140	[41	81

TABLE 1. Characteristics of Compounds Synthesized

* T_{C-N} is the temperature of transition of the crystalline phase to the nematic liquid-crystalline phase, and T_{N-1} is the temperature of transition of the nematic liquid-crystalline phase to the isotropic phase.

Enantiotropic mesomorphism is characteristic of all compounds la-j. The three-dimensional molecular structure has a great effect on the meso phase characteristics [3]. The -N=CH- bond is not absolutely rigid, and the physicochemical data indicate a noncoplanar configuration of compounds containing this bond. The pronounced tendency to exist in the mesomorphous state is attributed to the nonplanar structure of azomethines [4].

Semiempirical MNDO LCAO MO calculations [5] with complete optimization of geometry were carried out for a detailed study of these compounds. The major geometric parameters, bond orders, and atomic charges are given in Tables 2-4. The geometry of the thiazole ring linked to the benzene azomethine group holds interest for these products, which display mesomorphism in a broad temperature range. Thus, in the compound Ia (see Table 2) the $C_{(4)}-C_{(2)}$ (1.386 Å), $C_{(2T}-N_{(2)})$ (1.404 Å), and $N_{(2)}-C_{(3)}$ bonds (1.336 Å) are somewhat elongated, but the $C_{(3)}-S$ (1.689 Å) and $S-C_{(4)}$ bonds (1.674 Å) are shortened; the lengths of the corresponding bonds in unsubstituted thiazole are 1.355, 1.376, 1.327, 1.701, and 1.719 Å, respectively [6]. Analogous changes are found for the bond angles (see Table 3). On the whole, the thiazole ring is virtually planar as indicated by the dihedral angle values given in Table 3.

The plane of the phenyl ring of the benzylidene component forms an angle of acoplanarity θ_c with the plane of the thiazole ring. While $\theta_c = 40-70^\circ$ for the stable molecular conformation of azomethines containing only phenyl rings [7]; in the compounds examined, in which the thiazole ring has a greater effect on configuration, $\theta_c = 16-32^\circ$, in some cases (If-h), $\theta_c = 1-9^\circ$. Table 5 shows that the minimum value of θ_c (1.8°) is found for the compound If, which has the broadest range of the mesomorphous state. Apparently, the minimum angle between the thiazole and phenyl rings in the present case corresponds to the most compact molecular packing, although there is no correlation of the geometric parameters. Most of the data for the compounds Ia-e correlate well. Thus, the temperature for the existence of the nematic meso phase decreases and the range of the meso phase expands with the increase of θ_c (Tables 1 and 5).

					Ump .	pano				
Bond	la	9	lc Ic	ΡĮ	le le	If.	l _B	ų	li li	ij
					Bond lengths					
C ₁₁ -N ₁₁	1.441	1.441	1.443	5 44 .1	1.443	1.431	1.441	1,441	1.441	[44 .]
N(1)-C(2)	1.417	1.418	1.423	1.423	1.423	1.420	1,418	1.418	1.419	1.419
C ₍₂₁ -N ₍₂₎	1.404	1.403	1.404	1.404	1.404	1.401	1.404	1.404	1.404	1.404
N _{c2} -C ₍₃₎	1.336	1.336	1.336	1.336	1.336	1.351	1.336	1.336	1.336	1.336
C ₁₀ -S	1.689	1.690	1.690	1691	1.690	1.734	1.681	1.690	1.690	1.689
S C _{it} ,	1.674	1.674	1.674	1.674	1.674	1.653	1.674	1.674	1.674	1.674
C ₁₄ , C ₁₂ ,	1.386	1.386	1.385	1.385	1.385	1.404	1.386	1.386	1.386	1.386
C ₁₃ , N ₁₃ ,	1.393	1.393	1.393	1.393	1.393	1.398	1.392	1.392	1.392	1.394
Naj. Cisi	1.303	1.307	1.306	1.306	1.306	1.298	1.304	1.304	1.304	1.302
C ₁₅₁ -C ₁₆₁	1.477	1.422	1.423	1.423	1.423	1.465	1,476	1.476	1.477	1.480
					Bond orders					
CN.I.	0.972	1.972	0.975	0.975	0.975	0.985	6.973	1.973	0.973	0.973
N ₁₁₁ -C ₁₂₁	1.018	1.018	1.003	100.1	100'1	1.020	910.1	1.015	1.014	1.013
C _{GI} -N _C	1.165	1.167	1.163	1.163	1.163	1.239	1.166	1.166	1.166	1.166
N ₁₂ -C ₁₃	1.578	1.575	1.581	1.581	1.581	115.1	1.575	1.575	1.575	1.579
C ₁₃₁ –S	1.097	860.1	±00.1	1.093	t(n).1	1.135	860.1	860.1	860.1	660.1
S-C.4	660.1	1.102	1.107	1.107	1.108	1.190	1.101	1.101	101.1	1.104
C ₁₄₁ -C ₁₅₁	1.602	1.601	1.616	1.618	1.618	1.498	1.601	1.602	1.603	1.604
C ₁₃ ,- N ₁₃ ,	1.064	1.067	1.064	1.065	1.065	1.064	1.066	1.066	1.066	1.061
N ₍₃₎ , C ₍₅₎	1.785	1.776	1.783	1.776	1.779	1.796	1.777	1.778	1.778	1.799
C ₁₅₁ C ₁₆₁	1.006	1.024	1.021	1.026	1.024	610.1	1.010	1.009	600.1	0.994

TABLE 2. Calculated Bond Lengths (Å) and Bond Orders in the Compounds la-j

				Cong	puno				
	લ	lc	Id	le	lf	lg	Η	li	ï
				Bond angle					
	109.6	5.001	5.001	109.5	110.5	8.001	109.7	109.7	109.6
	117.9	118.6	118.7	118.7	121.8	117.8	117.9	117.9	118.0
	108.9	108.9	108.9	108.9	109.2	108.9	108.9	108.9	108.9
	115.2	115.2	115.2	115.2	114.1	115.2	115.2	115.2	115.2
	91.3	91.3	91.3	91.3	I	1	ł	-	
	128.5	128.5	128.5	128.5	124.4	128.6	128.5	128.6	128.5
-	126.5	126.2	126.2	126.3	129.2	126.6	126.6	126.7	126.4
	123.6	123.6	123.6	123.6	122.6	123.8	123.8	123.8	123.6
	123.2	123.2	123.1	123.2	123.6	124.3	124.3	124.3	124.9
_	121.0	120.9	121.1	121.0	122.7	120.4	120.4	120.4	0.011
			ā	ihedral angles					
_	-127.6	5111	108.8	0.601	0 661-	1.841-	0 961-	-1763	1561-
	-174.2	175.4	175.6	175.6	-174.7	-174.3	- 174.4	-174.4	-174.5
	-0.7	0.6	0.6	0.6	-0.9	-0.7	-0.7	-0.6	-0.7
~	0.7	-0.7	-0.7	-0.7	I	1	-	I	I
	-179.5	1.79.1	179.1	179.1	I		1	I	I
_	-178.7	176.6	176.6	176.7	179.8	-179.4	-179.3	-179.2	-178.4
_	-1.1	1.2	1.2	1.1	0	-0.5	-0.8	-0.5	-1.0
_	179.7	-178.8	-178.9	-178.9	-179.8	179.7	179.6	179.7	179.8
	151.4	147.8	152.7	150.2	178.2	173.6	172.0	171.2	14.8

TABLE 3. Calculated Bond and Dihedral Angles (deg) in the Compounds Ia-j

Atom					Comp	puno				
	la	9	lc	ΡI	le	If	2	4	11	ij
C _{ei}	0.021	0.020	0.021	0.021	0.021	0.011	0.024	0.024	0.024	0.023
N	-0.214	-0.214	-0.207	-0.206	-0.206	0.193	-0.214	-0.213	-0.213	-0.212
C(1)	0.093	160'0	0.077	0.075	0.075	0.014	0.093	0.092	-0.092	0.088
N(2)	-0.268	-0.267	-0.268	-0.269	-0.269	-0.175	-0.270	-0.270	-0.269	-0.266
C _(i)	-0.034	-0.037	-0.039	-0.038	-0.038	-0.206	-0.033	-0.033	-0.033	-0.040
s	0.385	0.388	0.384	0.383	0.383	0.597	0.386	0.386	0.386	0.390
C.,	-0.337	-0.333	-0.310	-0.307	-0.307	-0.512	-0.336	-0.334	-0.333	-0.328
N _(c)	-0.263	-0.259	-0.258	-0.261	-0.260	-0.162	-0.267	-0.267	-0.267	-0.254
C ₁₅ ,	0.206	0.200	0.203	0.205	0.204	0.041	0.207	0.206	0.206	0.198
C ₁₆₎	-0.152	-0.133	-0.147	-0.153	-0.152	-0.125	-0.150	-0.149	-0.148	0.124
$C_{(i)}$	0.013	0.003	0.012	0.017	0.016	0.068	0.012	0.011	0.011	-0.006

Compounds la-j
hc
int
Atoms
ou
п.)
(a.
Charges
Calculated
TABLE 4.

Fig. 1. Structure of the compound Ia obtained by complete optimization of geometry in MNDO calculation.

Compound	Etorm, kcal/mole	μ _{total}	θ_c , deg
.			
la	81.49	4.05	16.3
lb	79.41	4.89	28.6
Ic	73.86	7.24	32.2
Id	69.13	7.52	27.3
le	65.09	7.46	29.8
lf	63.01	4.93	1.8
lg	54.89	5.00	6.4
Ih	50.86	4.99	8.0
ti	46.23	4.99	8.8
Ij	41.18	5.03	32.2

 TABLE 5. Energies of Formation, Total Dipole Moments, and Acoplanarity

 Angles for the compounds Ia-j

The anomalously high total dipole moments are also a consequence of the acoplanarity of azomethines. The mesomeric effects arising due to conjugation of the unshared electron pair of the azomethine group nitrogen atom with the phenyl ring of the benzylidene moiety influence the degree of acoplanarity of azomethines [7]. The maximum values of the meso phase temperature range of compounds Ic and Id may be also attributed to the extreme values of dipole moments found for these compounds (Table 5). Shortening of the N₁₁–C₍₂₎ and C₍₃₎–N₍₃₎ bonds is observed for the compounds, while the corresponding increase in the orders of these bonds (Table 2) is related to the slight transfer of electron density from the thiazole ring to the aniline (to a greater extent) and benzylidene components. The negative charge on N₍₂₎ atom decreases, while the charges on N₍₁₎ and N₍₃₎ atoms increase. These shifts probably have an great effect on the molecular polarizability and the capacity of these molecules to exist in the mesomorphous state.

EXPERIMENTAL

The PMR spectra were taken on a Bruker WP-200 spectrometer at 200.13 MHz in chloroform with HMDS as the internal standard. The phase transition temperatures were determined on an MIN-10 polarizing microscope with a heating unit. The purity of all the studied compounds was checked by thin-layer chromatography on alumina plates with tolucne–chloroform as the eluent.

The MNDO LCAO MO calculation was carried out on a COMPAQ-386/25 computer using the standard AMPAC program.

N-Chloroacetyl-m-nitroaniline (II) was synthesized according to the procedure [8].

N-(2-Amino-4-thiazolyl)-3-nitroaniline (III). Solution of the compound II (14.2 g, 0.06 mol) and thiourea (4.6 g, 0.06 mol) in absolute ethanol (100 ml) was heated at reflux for 8 h. The solvent was distilled off and the residue was neutralized by adding 20% aqueous solution of sodium carbonate. The precipitate of product III was filtered off and crystallized from water.

2-(4-Alkoxybenzylideneamino)-4-(3-nitrophenylamino)thiazoles (Ia-j). Mixture of the compound III (1 g, 0.042 mol) and corresponding p-alkoxybenzaldehyde (0.0042 mol) in dry tetrahydrofuran (30 ml) was heated at reflux for 4 h in the presence of catalytic amount of piperidine. The solvent was distilled off and the residue was crystallized from ethanol.

REFERENCES

- 1. E. I. Kovshev, L. M. Blinov, and V. V. Titov, Usp. Khim., 46, 790 (1977).
- 2. E. I. Kats and V. V. Lebedev, Liquid Crystal Dynamics [in Russian], Nauka, Moscow (1988), p. 5.
- 3. B. M. Bolotin, Zh. Obshch. Khim., 47, 375 (1977).
- 4. V. A. Izmail'skii and E. A. Smirnov, Zh. Obshch. Khim., 26, 3042 (1956).
- 5. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- 6. J. Mefzger, J. Chem., 3, 99 (1969).
- 7. Azomethines: Structure, Properties and Applications [in Russian], Izd. Rostovsk. Univ., Rostov-on-Don (1967), p. 78.
- 8. M. M. Murza, A. S. Golovanov, and M. G. Safarov, Khim. Geterotsikl. Soedin., No. 4, 546 (1996).